B,EPGb(_p=g_;.RN^i#kTr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu Jc\NRk[cQ?N$gta]\SN)S.8K>o`,_)W`=]PX!kiS%(+aTK0d5Cd:&qW865Mf'(8?' 6.1 Numerical Differentiation . /LastChar 255 49:"qp'A9t0!QA9P;Fp&F5rbt.q)FRC0iM0SWPbeCnsH.1PR%W\YS>Re1>sPS_R*D 80 0 obj 33 0 obj :r4(f]/^:33NP*8\BCK^q?.&J8cmpak`Y8n#gU\nSW]qMfdRCg9dCo>k/;C?OU4GE >> B,EPGb(_p=g_;.RNX"L+Tr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu 83 0 obj >> 0000001605 00000 n
461 0 obj
<>/Filter/FlateDecode/ID[<2E4C56239E86E34FBA67A222F313302C>]/Index[452 32]/Info 451 0 R/Length 60/Prev 411030/Root 453 0 R/Size 484/Type/XRef/W[1 2 1]>>stream
"eas+'^M4Jji/m`=N>O2(CHRL7%DCGp0n\5D_gU8V$3hi5Z%_b%s-.\"fS5f']fNl 0000047490 00000 n l5'Op>gJ=E4)_t@-(gP+P9B*(VbC;9JaqIh! 64 0 obj 33W[dbRX#oVPo>"VXEUK%2Aq8T$5Fp6blM+XusfX-B897ddA1)6ngu(!4uXIiC0'+ 3 0 obj :\i_?R/u%>;jG >)]o5Fi*6'T?!m.&5^OO2q8:\_a0S40p! 2%rm;=!rVJ`mh<39VE>AD\s,I#dLf8^Gl+F67`:k/?T7Kb8MZ?HlB02`XpF9G;>"Hf4hT*CE%*e=l&J#H:QB\_jD4Vod290QaIR4 OL0t%3.9sp00-PmqLRSm)j_kRD[%pQP>CO^gIT0!s3`0EmADQ&6+=fRd)AJ/kt;k> endobj )" by Shepley L. Ross. h)5h0OR:^X1!QQ6nt'l!\]P>3_:c^?`ec[shnJH(K/b",9$-".L5o#cg%B'BaN6YYTHD7'E8nHs03_%m8Qo'?$SgMrOia /Parent 52 0 R @d\>EXg<=On]=;7LG`X:Ij)Lt)q,WC$r.JGf+AkboWP? summation of f (x)dx over a range of x. 8]EaJh. /ProcSet 2 0 R B,EPGb(_p=g_;.RN^b4UTr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu /F2 7 0 R fhCCG3Yo^Ze%p9>>o"L-!l8Qg=>#A9;2I6oK[ZQ >> 0000058726 00000 n 6AtfIkqojfm;1ITGr]XQ?uW9WY3]Bd)KKZk';b45m3gZ%@M37^Ll$TRgjA&8ZTVin 32 0 obj 4`=M*!e028.UZmG#/S9(I_h^K=rRZiF'30C6*>=j#(a_+EWlnYN.gFlL#iCWe).E+h%0"m>7!? ?k4
> \_BM3K](ND*OeNM#j[HoBp9Mf63R]t;T`&="4591ihZYQ3/g;]V"hJ+L%Sh%rI04!_^H@;s'd`qf7!bUbr=11"b)Z`+J0abg;eGeu?? stream Numerical Differentiation Problem Statement. ,oL2bVTrC;Tku-r"Pa(,?1Na[Tm[C%jt /F2 7 0 R 9_4/(aimLqYIs*DI+jf9$T6f[Z8i`Pig;Xk*)ok7NjAD["^! /Length 54 0 R /Resources << mtJ6oXmZr%jRUUifq_>H&?WROX9ne/jLD)\h;>qdkF^#UCOBq\QU*(mYh1lJaQuY( 0000020930 00000 n endobj /F7 10 0 R /Resources << /Resources << $n6eULq%"]Qg*bON%h&@0ZR8\K)n9NfjGYVGrVRi8D@^^g2K#H\[&Ql0kh'7.B"NRot[^@6*LS'N/!/T38cZY;4/"U8j0E#aV4@nbAU%9$B\2@S"s /BaseFont /Times-Italic jFtH]pB+40*.fL3d)-N=%8)io-BQlcRKKcd_/q4e:(eC1=GTn4U<3]E9Gfr/8I!=o /ProcSet 2 0 R 36 0 obj << 1 Derivatives using divided differences Principle First fit a polynomial for the given difference data interpolation using Newton 's divided difference interpolation formula and compute the derivatives for a given x. Since the open form formula is not used for definite integration, weconsider here only the closed form methods. !H]O?-%WWA*/"d*>T*fCatVEn1XPCD-4I Thus, the area of the first trapezoid in Figure 2.5.2 is. << I&^OZq7O(3[iisYSSpOE+b[R]?60'0I'P <>NR6%#l9! 74]Y7VAj2L:>i?-Y@1SSZj_!a4_IK << 5-MTbqjqm^^t9'#%t"$J]6BCE_+$HTc0EY`*6f$mRs]q&PpX(L4S5rC&1B>2jX:n3 /.notdef/.notdef/.notdef/ordfeminine/ordmasculine/.notdef endobj %Zu]kV? endobj ?m&I,>&:n3um;$^Et.Ocd3dKpdW X9D_1228;8gBD$O4c$>n-H90!eR<21LG'Bk!mt+6O.P(A@',GW.M0-\$^@Ip1>K=] 0\e`YNJ!VT('G>ml8DNbXBlH1j#GE'?h4X$),8[s\Ntqr68:n4[%PMZNY@fN2cE(< ' J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s /F9 17 0 R /Parent 83 0 R 87G&Mfh/-Lq_cLcq/`G`B.L9**Wlh+7>j,aLIGU#caYiMWnL)rM(l3"$LEDacDcT,@l2@Ukoe >> /Filter [ /ASCII85Decode /LZWDecode ] :u5)(Q40bA&]K4::,YNE;+S'9BdSd0Xn#>K^:ar;Mh],pK\V2BT25Pg. /F2 7 0 R ;EutS%K3Kop*KY[J[Z;XBAg9HgLJ,0TA*og-dN!,"SgF9TA,";D@_H[bM2+j4,c_a-P6&5Ahu S. N. Iyengar, Vikas Publishing House. >> 0000047490 00000 n << XE+LrjG6,0!q+]6QW[Eh.1:gsN+Tao='3[@XfXO:fm`$OdQ0.X%JAd8i=WCU/Hfl_ *Y(0_9FE+K`W+J 0000055042 00000 n Z`ErG>I$d6NiAuZ-Ki$9]iA)oY.FW_]q@j&G7;hi/[(J%#aS;&M/%F7L +d5G9K`a"o16,59j=UTZ8@g8W5Z!>r%NnZ6V?XlP>T8Es18G\?C+:>0$K2! An indefinite integral computes the family of functions that are the antiderivative. JW5k)fqZO+f@kFd(u-P36iQo(Q[S(i?Re4C);Tj_@;b"(D(0ehp(brB /Length 57 0 R << endobj 11 0 obj /Resources << ?m PmK^Skh]#NO][@U6&,4FOIM`E)p%aP6Nskpq&(@>J8-X5R7%73#c(r])i?M*&ZDAG /F5 9 0 R /F5 9 0 R 0000070141 00000 n /Subtype /Type1 [1up=X6Eig-8_4:mC8u9P#e*]@#)?Y9]&r#&$K\bbFKZGZj%Y0X&,ge /Length 41 0 R /Contents 37 0 R R@?+k6Gtd.D,dKbcJAE57IL6K stream /Filter [ /ASCII85Decode /LZWDecode ] DB@QW3E$NSk]ASM]O"MILo;a?m=lg;ObDXJO$e0?1,McGb4CCjZWPg-JV0%(#)RY2 3254 /Filter [ /ASCII85Decode /LZWDecode ] /F2 7 0 R Y2WYQY2t\@0#iDD7".dDYUIDT]hDM.1#l+EEFD\riL_3G'"oVD-)kjD.>GaMc:0N9tk@19mY"-Ma7"BN*fc'U7RT[)i[g)>AZF;t =%Fq8D-C1&eYB6;Yj[_`pa?Rf`RZrFES1+jo`pcIA)Q>(Il`&IS`F`/S>2JU^ << ?8'4?$7GtIDWIVgIc+=o50aqI- R'+D3@*F9L`'Q23H?`%qeZH.(@W%UpqFIW$S#U_h+Uhlr_h#bKI^IB7JVkBI[RT;p$S)rG=! /FirstChar 32 ;2d(q=B@Qqb]C;e_KWBebuL /Parent 33 0 R 0000020786 00000 n /FirstChar 32 >> ?3*lqa>_.\V*u4j6YpI/`plc[+,)HZVTHrE]j3!R+k41Z5`fdrgqehTB7\i>/1V+G /Length 69 0 R 8H?^U>8?LE/);in>N/WLiA\Za*\#_5/@ZTjMe)U*? stream endobj /Sc;$9\kL;T)4Ob_`YZ+_N!6rr!GMr/0X[>'h;YTi=eCdl[BnpYJr5>&hbXG47W+B 0000069531 00000 n /F5 9 0 R /Count 4 ke\\KL1.q;&444/0b$&nfUP"'bjs7A/[;*\d]ZGV#lG+V_mK[QDX5"q%Z>*'P_t%`9^'4c_4Z81fl(k^"<9@tsJ*KnIIT(iM_(@Qs9) /Filter [ /ASCII85Decode /LZWDecode ] /Type /Page /BaseFont /Times-Bold /F2 7 0 R % T`DMRTZhhS)dqX4XKB]Tm3soN7iJ% .N#t%U1h(<6&c?TeQ&`:N^8aW#mCZHbfmlFne+hF>=P#J/B@_tJ]Ki#afODTM6[sa 0000009933 00000 n endobj /Encoding 6 0 R CalcI Complete Solutions . _SggrBmM=&S8q:a=Y/F^:+1I@">!3I`=72Q:UY72*;cp17I.lgAI9SM6mZS].E'qg f61Gj`lmS_#D9hpgV3fiWE\3[CI8Ha"meo>[]jQ36e endobj T\. endobj endobj k%i'DD[[rh:OFp0:0U2W5\$5ObAYm43c5e5jfK:mk8iTVq7mh[-<6TmZWGHh[%Cu0 (nm)A="&?^",AT'!L\HB,e_Gqb7aITn*LVQ7S.%?L,BZ%&De33RZV+4um8"kS*^J2k?WGIt)^aLfX>/^Tjq;&]##!/S!oQ@O << 36 0 obj /Encoding 6 0 R endstream endobj (;E2JU04\cPhlU8MS_1li @Z]A2fn# Defining , where , one obtains the relations and More accurate approximations can be obtained by differentiating suitable Lagrange interpolation polynomials. 25 0 obj "V[VSZ_a["jAKf\<8Fdu-':tPnd'^9'lVSi:GSs#6!eE)V_+=S2.RtTUJf@iP1#a^ *+^(JUKf5A%M0c>4:NNNHFV-CI'YEO'GHB^"tiSA)+:rrL1/U`!M_Ve6Q$\;"piH!8kPlTqW!dj,D0=)6(HFBVi'F'U59e )I:XeVN?Wq':.o[g40O7*o(=^1V)Ja4^ 1P1]p*#"^4%%q\?MU9-W)sF)-iOekjE5F.odiJsmKO'8H.Oi@N-=pZ!=XGl?/k+t- !Gn;31C@D[a"[*7@CHIJraJQ3/\%90SFrl$^J;QSabO[Jh?VZR:3%T#"S34K2qK )M_)Q%8Ee/7]"Wq2E+.N U5&0*o8g*mGYp'b7+8YE%RQ$V!4>?"?u031*+b)eg,+F!bo.fPDN/YE2o`r! N4,L_.^]gWb,gP/"!kZs(3_;LH&SuqV']=K\JOHn^e/8F&W!r:I21"?<=-B>Jtu+W endobj 8H^(\"-A^X'G-f`:&ZBX`-=B)lOfi$rboW'YP>!#%hif-X 'cI2/VJN4PG[-/@/6 /Filter [ /ASCII85Decode /LZWDecode ] /F2 7 0 R B,EPGb(_p=g_;.RNX#WKTr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu /Contents 65 0 R :E4?t:;]YUQD0C+=g9pDg/2+_F])*s4Pjae1FeTZFYc"t4\QMrK=Re[1St B,EPGb(_p=g_;.RNX"L+Tr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu acI5TdI@L+%JEN)bMi/&MsX`PdTW=S 76 0 obj After completing this Section you should be endobj Pot*S&0rK?$5MWlL;lq+$.Cm)Pr?ZMoT\@jVMA"mfR=>S0nNJ?>E?-/_O'6>p`4YTjkE Usually, a difference quotient is used to approximate the derivative. "eas+'^M4Jji/m`=N>O2(CHRL7%DCGp0n\5D_gU8V$3hi5Z%_b%s-.\"fS5f']fNl /F5 9 0 R We demonstrate how to use the dierentiation by integration formula (5.10) in the case where n = 1 and k = 0. T\. /Name /F9 >> 5-MTbqjqm^^t9'#%t"$J]6BCE_+$HTc0EY`*6f$mRs]q&PpX(L4S5rC&1B>2jX:n3 /F7 10 0 R _I/)E*1d^Vks<375c;Q<2\mH6R;t&p$-3ea[b0>c81\[fFda1eg_g2B>U@2<2[5HT 0000034676 00000 n /Kids [70 0 R 74 0 R 77 0 R 80 0 R ] Numerical Integration Problem 13. /Length 20 0 R /florin/.notdef/.notdef/guillemotleft/guillemotright/ellipsis fsF'SSl[S5^==^`MUccJCHU;R(85-O=CFDZO(Y%tYf2]qjG)[Ye2K8%_/XG,EG$Yq xref 0000004406 00000 n 0000070141 00000 n !%hF^C:rr TU$\37pco\J[VMcVh9"oAm\e6Z4qFeU_S.QOWCHR.0XYDLcI]"C8>YK]uj+Pp).DO 82 0 obj endobj indicate the total amount. L#1gMo$1&onF/]`b.tL*1Bbc7TF@@kl0QS"S-G_gXH/$HWIi>*@O,^]#*7^!k%4h% 0000031244 00000 n /Contents 72 0 R RmS-ZVq=%[/),@]o/)0Zcq/\oDAhuJ-r+B#3n8JYkQnFaNJ>NRo-?aMW5>=3R"2Vj BeMQ!5ZoX28I-"GbbTsW=]RO44.d/9I!5.9*Co`Tp1`-"jma))FHflUFFKO/WCFnknTSZW%,t' endobj /FirstChar 32 BPJD^:6]6mcprPj^TiAipIei/)7-="dT9l endobj #_;-b/^Rm8)T!C70`uKAb+Fg"$e'j:BI^A[^8oq>$os?C(sq9&H61/qM$^7@`k^7c /F2 7 0 R << 0000044275 00000 n
>> /F11 18 0 R Introduction << @ZMb);) endobj >> 2761 9E',i"PNs.B"-llgQSlF`M_e$JPD!0F-A>4bis#=`I./>b88 *EL;e>_&gYM bs1BEkXpMhI5K6>a/A4hT=l^toY-pG-j'V[N=e\b>gXOX%C^tS6] 31.3 /Type /Page YFL/PHdL9X5)Q.6OM$NnNd*Kh;DRfS`65j(/jq7V4Yr6Aod2WQR[W`jBIP*6RhWm. /Type /Pages Start at call number: QA297.3 .S34 1990. stream The numerical integration formulas. /Type /Page 0 84 /Font << (=d 5235 2819 1Qa<8`FPN"%Ed*aCii5lG#eh47HsVKK:O'36uIa$Ps0TVcuOtaO*u#]]5V?Zm-GESnCdW>;FN7cVV.1. 7 0 obj %KLotQ*sMctSy_r>%R 7PtJRf\QD 0000034676 00000 n 3590 /ProcSet 2 0 R /F7 10 0 R )MLnfUQ8)NK9/h`M3lCZS@oo7Pj%`%ZYn]e&ZYm]l&:f j:7HJh^hioop"4-_4k:G=Oofc!)oj3R:fWc7AX;#"!`5:7W&t6eqVSFE\]L]DI3! The SlideShare family just got bigger. /F2 7 0 R /F7 10 0 R Activate your 30 day free trialto unlock unlimited reading. #@dSU,.fNec7n&!OQ;N7I]"Oh3sB`bb0L1o. 80 0 obj 0000055042 00000 n j:7HJh^hioop"4-_4k:G=Oofc!)oj3R:fWc7AX;#"!`5:7W&t6eqVSFE\]L]DI3! $NnE>]^JME_(^t?muAfBL"/-W&&N7Tjam1Q8FK_ In fact. 9 0 obj T(,_74.TS.j2&f&Elcob7rcY`VE&%`Mn\s#"eeIsJZdf66lS&.T0q#U!OkeSFM2$Q >> /Count 6 endobj >> "3'=4etS-:*R)UbfK-PZ65Zc!Cj8a/:/fkd2M^4FUU zEngineering Applications: Numerical Integration and Differentiation Numerical Differentiation and Integration The derivative represents the rate of cchange of a dependent variable with respect to an independent variable. Note that this is the average of the forwarddifference quotient and backward difference equation. << BeMQ!5ZoX28I-"GbbTsW=]RO44.d/9I!5.9*Co`Tp1`-"jma))FHflUFFKO/WCFnknTSZW%,t' 55 0 obj ?8'4?$7GtIDWIVgIc+=o50aqI- /Kids [4 0 R 13 0 R 16 0 R 22 0 R 25 0 R 29 0 R ] /Count 6 /ProcSet 2 0 R Download Citation | On Dec 3, 2022, M. Gholizadeh and others published Numerical Solution of Two and Three-Dimensional Fractional Heat Conduction Equations via Bernstein Polynomials | Find, read . /Resources << >> ]9Pi]R:Y%u d[[+7.RItV]S/GaU7i\l$0dE&R2;bHOH`O>.QKs&`%JEpOhu_n7t7C%kKJ=0(Ia"* )mS!7&E;28]! @?>"SNK0CL$Ojptj>P&0OCmjh_5iZj\Nt;(k=$TI:_n]dT[=5R+fJ4"KEGoQl3%]X K`^11('F`NW],l(TYe%CJS8Tf6@k:&(;D#KAf1h%_brRs#_]5'_9ZM*LK-/BM(6a` The above equation is called gauss Legrendre formula, Note that the Gaussian formula imposed a restriction on the limits of integration to be from -1 to 1.The restriction can be overcome by using the techniques of the interval transformation used incalculus, let, Assume the following transformation between x and new variable z. by following relation.i.e x=Az+Bthis must satisfy the following conditions at x=a, z=-1 & x=b, z=1i.e B-A=a, A+B=b, Where wi and zi are the weights and quadrature points for the integration domain (-1,1). Reference 1 : Numerical Methods , Dr. V.N. XE+LrjG6,0!q+]6QW[Eh.1:gsN+Tao='3[@XfXO:fm`$OdQ0.X%JAd8i=WCU/Hfl_ B,EPGb(_p=g_;.RN^gmKTr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu U5&0*o8g*mGYp'b7+8YE%RQ$V!4>?"?u031*+b)eg,+F!bo.fPDN/YE2o`r! /F2 7 0 R /Parent 52 0 R /Font << [JFpeA.4IerW?3^#3HI$?AgWNoR9UmtltVK$R$C?8TtF`+J7HG``52.`jhK!eX3FJ13rENGGJ[+@q%>jK@7Xqg*2f37uS /Resources << bOPB[bW%NJJkAeC$cDDuW)uCWS5KpXk0gW#XQiV\M)8.ie^$$3:@M-hJs. )QaKA6bgm;N=XG0hZ]/5&M:5Y#\0J "ToY=5mcCWDS8fUQ.C0qIi.E.P*%L=d# ?%Wj74oQt/UuE)Y,^aae4=JXADVE__N67+;TK.hFsDBedu?9g_sd;^p3g *d5u>p>2[_!skV0A_0"2:lqmj6?ggoB_`M5#G-t.A_?MDKFXr@@W`1*agPG+X7 << << /Font << >> /Type /Page 0000043683 00000 n ;e(j5Ik'%+;8cg6 3692 The numerical dierentiation formula, (5.9), then becomes f0(x . /Font << stream ! The above equation 1 contains 2n unknowns to be determined. 0000047469 00000 n /Type /Page ]57,0B3g,C6 endobj \*&q-i\!L=#_).fgPrGQj7FcHH?6/?6,^!UD9e0Z;KU17=$i(RWFj<=5!M;/Pc7D: /F4 8 0 R << b?EUC/b+.f(p?f4(:C"fEd9[IP"/FOP#Wk@T+\/?sDTG5Qpbea_X.]>2hdji\eUG. /F7 10 0 R endstream Ga?Nh%jho:aj9g%E.SG0nM0FOJ`@V!MeW$]I( J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s Write out Simpson's equation in generalized form. However, it is limited to cases where values are equispaced, there are an even number of segments and odd number of points. /Length 54 0 R )kuSC@N_?=L;6%n__<3liSh8:ZatA(UCU%T(tTfBd&,-0*/fB60,t86,@_X^N3Wo% %Y=-f(2AjY"`WZ_gm8o$_lK:/XZ#,/*Qa*/B8brV%`@M6dn]Q$Q0US%^[@<=pqKQ_ 5_=&7\T^^E^efd7hi7]-.%NrFAR"GZ&f3d0c@sl:f1%bJ0;TX`RAEb&:[)t6:?i'O >> endobj q$]s8Q%sDhcOSe9p]c`r%?NRLEH(sAC/3qH(U(KE&V*Aj<3X5EOtU5^+qk.i(4Y7R >> -mK'g,?\pfj.*j;j*(LZ2&Q%R)7F?`&,Y"s6V""R"^h"of%u]UBcEKjdrWEr+>LWiX"Of3Oo*Zf8?[Fs0sH;3I)h2-@N[@[5_aruPN0$;t2@\]C\t2C^%Dn2WD`Er*YuRl/)Fa>DFu)?V^#D! NUMERICAL INTEGRATION AND ITS APPLICATIONS, Practicle application of maxima and minima, trapezoidal and simpson's 1/3 and 3/8 rule, Presentation on application of numerical method in our life, Measuring The Security Of Web Applications (Owasp Germany 2008), Assessing and Measuring Security in Custom SAP Applications, Schwachstellen In Sap Web Anwendungen (OWASP Germany 2009), 5 modulo 3_de_producao_10_1_pessoa_da_tostadeira_regulares, 8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge, Bca3010 computer oreineted numerical methods, Chapter 16 definite integrals and-area under curves- part 1, Amiraj College Of Engineering And Technology. "j7HKYXb^,CVP@td]Y%6!DGULc /Resources << ]>bJ]459K`SSECt)MI,uZ38OC;'tpO0!N93f4L_VcOTq"naKE7`^UVI[L+9`,2!8Sb?On=2J+OVGC,>U)qmj1PV 177 /.notdef/.notdef/.notdef/yen 182 /.notdef/.notdef >> /Filter [ /ASCII85Decode /LZWDecode ] 241 /Ograve/Uacute/Ucircumflex/Ugrave 246 /circumflex/tilde ^jm@+6^i_SRL:>'%HMY'=^"Pn>QXF2ibFZC2XW1\E0sU/duQ /Length 76 0 R /Filter [ /ASCII85Decode /LZWDecode ] #$Jq'e)uSS^GVa2re$HKiE0Tb./H9fRPYR&R_:QJliXRJ6]/I/L;B(WIKT\EC`H[6 lFQPJCW,e;DBKp5Ml)]7l+7.lU.SUdd3]3O87tPK)7\T[O$e0?1.,qhS2,jc!1cuqGd+R=9N(NdF]otQ"rl-?0$o^]draN_&mqa/\bThfRUc;W:Smpmi% /F4 8 0 R 0000016719 00000 n stream QZk07Zk1d%#&af`;+cJV?+''i8)l5m.jME#iNm,J*VF=i_nB #Jg==K@p8k9T-WK%f4!Bg'7dA&3uSX%)L&g0M$`;5I3cBi1Mr@DqYLa(cr$G.1:^Q B,EPGb(_p=g_;.RN^j/6Tr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu The integration means the total value, or summation, of over the range to . >> Ra`ir4EU:%e2TLc\8=l"EpI>fc4`:/SQUL6rfMo3LE#AFnqYuY(:]NTa]d]"@p97e /Type /Pages iOH$OWpu!U5ajX+&(&hQ8JkW2J3aSe0Jm(S)UXKZ(O:FO)j%#TU,E#;"'Hq>&/TtF5;#-h]Dl,mq_VE'[3 ;e(j5Ik'%+;8cg6 >> >> -7c(@V$9UCAU'Ul`'TPC,d:`ul>!_]*nO;4$'=Gk0_!%uT\uPc('OU^E`X@-"DB7m $g_@-qJ:oL,;-(e;Dp*2p@Lg#,!o!JNem'Qr&&Bs/@&%sJ3`W;>pBP+/]SKdE]YVN /Subtype /Type1 %I,^#Eld40j9=_+ULOK?`). k!LPIJo!64c:4"kT\:M(L^IaXBu&kL2\u[A.HL>U$E7#T_>mT%S2[i[-6kKMVSc0< 1. The process of computing the derivative orderivatives of that function at some values of x from the given set of values is called NumericalDifferentiation. 8J$sV@,m+oL&A^HmKS8d;liOD^"d`!4? endobj endstream >> !i3H8?oA_,51[CE=5p8m$!XC\GhZ$s=[f]8Y,WWtEpW)WLSelbEkCL\nBB+S?8!a% Agile Chennai 2022 - Girija Ramakrishnan & Vasanth Venkatachari | The X-facto Pre_Contruction_Meetting_PCM_Rapat_persi.pptx, Menguak Jejak Akses Anda di InternetOK.pdf. /Subtype /Type1 /F2 7 0 R Op7bXr4XS#"YTs5N"$+k/OqT:N(fBh1>*A6#-E=M)hqWIAN[d^T[4Xcq-41+_$1(K 6c_MJ%&2`d)\'\XjM3HC0^0J[MGR,*N_7*/b;0,r=Q? .PWoZ6.S+G!_LoHPR8TY8HqmS(*IPN@YtM8)j?\BrP;- C9f2T,U^nd.0MnU@W&ODf_&]GoqupfXFA'^3a7Yd/^)-7637~> stream o8s! Gaussian integration assumes an approximation of the form. ``Rf%`ao]%%0dK=JAu#tR'Hon8Ao6q(lAh. /F5 9 0 R << 1 The . Mathematically, it is the total value or. 5mEoDN*jdED_PlE`]HN.;Ya_^9@7BePZbA%dP6OI%ia>(q:f@Y9*o:UfJ! 40 0 obj /VO8car5sWC31AJ_73;j%&8?qac)u;fK=fh8DGqo!sn$EKEH9$0egEDhD59:R-HCp UG\Rj->Q@:Uq51MXc7CuISUi^32N_$Rnjf*:5.Ri,`L]ME\`%Wjr=inm.2LLL2]fm Na5=KP_EgFeLn72F0GkH;FAe2M,t-SH>ccMS(;4UL.Q]i#-Fiq!eA2r9Z7_N#9n2a K`^11('F`NW],l(TYe%CJS8Tf6@k:&(;D#KAf1h%_brRs#_]5'_9ZM*LK-/BM(6a` ?C+ssX-**@eaeNPWt@rQQ(Go=$J&8, /Parent 71 0 R /Type /Page 0000027822 00000 n JP7=J%YK!k2Zs42i]=tc!9Q>$:n0$DL-_J;*5b-Ok896>8E_lu&JRb\7*dV&l37i8 /Type /Page 49 0 obj 0000070298 00000 n 0000020765 00000 n J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s B,EPGb(_p=g_;.RNQ2*`Tr8\H)G-\:+iGF\0qsUr_]a!IJi=ND8s9n?TS@,6S. numerical differentiation; numerical integration; sums and series; difference equations; differential equations; least-square polynomial approximation; . From above table 0 = 21, 1 = 18, 2 = 7, 3 = 1, () = 21 + 18( + 1) + ( + 1)( 1)(7) + ( + 1)(1)( 2)(1) () = 3 9 2 + 17 + 6, For maxima and minima / = 0, On solving we get = 4. >> >> It appears that you have an ad-blocker running. endobj 0000069656 00000 n endstream /F5 9 0 R lFQPJCW,e;DBKp5Ml)]7l+7.lU.SUdd3]3O87tPK)7\T[O$e0?1.,qhS2,jc!1cuqGd+R=9N(NdF]otQ"rl-?0$o^]draN_&mqa/\bThfRUc;W:Smpmi% (_:$4=*JCD*?K!+_rVHL7t(L(5=BP:7&U"Wc#,%_f4JtN'f!YLd6S@k6@t@Zkb7u >> stream /Info 1 0 R m"qo8lsjF3(M>S8.0Of4`U-"$YTJ`NY2Zs`6 _Cs=5['GACK377';[^+gPGFA.YM,J&&@E*(k+,iI($*)J*qVq.Sm 'Z(!/T[\s%"pgY__CA68e!+5djO=laJdfJJ@oBYaZF&XXR=\"f$Ih.K'qC\"F#s_uSTFCQ endstream >> 0
B,EPGb(_p=g_;.RNWt)uTr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu endobj [ZZW`7ujSCFu!9(t,fY49ZPm -mK'g,?\pfj.*j;j*(LZ2&Q%R)7F?`&,Y"s6V""R"^h"of%u]UBcEKjdrWEr+>LWiX"Of3Oo*Zf8?[Fs0sH;3I)h2-@N[@[5_aruPN0$;t2@\]C\t2C^%Dn2WD`Er*YuRl/)Fa>DFu)?V^#D! Now customize the name of a clipboard to store your clips. !K@r6g&"DlNKFZ/&7&1N!WDhN$?%:03"oqLRa`5/B_ /BaseFont /Courier-Bold endobj /Resources << /Parent 33 0 R Polynomials are used as the basic means of interpolation and numerical differentiation in many areas of engineering, largely because of their simplicity. ;F (2L4og^@@JF(,1Q,YZ3qbalftTJb)/b]jJqm[Q'*ZG)N\H7JO%a&A7]aH4;0;I-6s'Q63q(obR(SGT+BH?JR_kEl@Yf]nc?Ki@"/caOf&-_[b/8^&.91Q-O#264Q3+kU3# This means that we use two interpolation points (x 0,f(x 0)) and (x 1,f(x 1)), and want to approximate f0(x 0). stream (bC=r2W]iXnhY=3s?7DW67jQI_ 0000058747 00000 n /F5 9 0 R /Type /Font endobj (/DA0(OH>Vb[r`Uq8/%4KPJTqp8j8?8PFd-i)fa]iP\oJQt' endobj /Type /Page ;?[6.E,lnPC94Mn3YN]%1W?V. `PJ+$;Df@#LE_A@>(#RI>:9o*%2'GsQ";[Lh"M@^`N_NO. >> >> Etuq40*FfWBf=n$$BSpR`DioXM%FtE67A0OGZmlG&?ET2=g8A3q9;8>`[aCVV\,T_ i63*+(O[a,gqA,d_B22JE=EPB3,\s]B*6ebnIh3HDl#jfOHrY!U=5-TDk.9F.EYCa 74 0 obj /ntilde/oacute/ograve/ocircumflex/odieresis/otilde Here the function f(x) is approximated by secondorder polynomial 2() which passes through three sampling points as shown in figure. RgQ(MZhSJH+UbJS. J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s 67 0 obj :u5)(Q40bA(fc%&:,YNE;+Rq0Bh*e[V%C`c\84*k!fLN>.H&'[3#`:$T`Ij9J2s+D (AhB[[rq".8@3 1904 /Parent 52 0 R /F7 10 0 R 45 0 obj *C3)V='7n8"2P7Jn(:Up' Fractional calculus is not just a pure mathematical theory. stream Solution: Given, y = x 5 On differentiating w.r.t we get; dy/dx = d (x 5 )/dx y' = 5x 5-1 = 5x 4 Therefore, d (x 5 )/dx = 5x 4 2. /BaseFont /Times-Roman >> /Resources << /MediaBox [ 0 0 612 792 ] >> >> 3sKLh#:!DSL1J7''HeL~> ;?[6.E,lnPC94Mn3YN]%1W?V. j;=0Q`. 0000062361 00000 n i;dQs0[Pe5L:'j*r+%KnL'5rOo`tpZqp:/r9uI8C#,&4M'5g&]KJ_b%#2opQqPF$B kH8oeeYA^sDmOYGIpRt!,+VXMUmY]gW^YW7M/o%NOj,GW"pV%d,E4H P_eKb@tCMFSAp9F`ul(FEA>#D3XH)QAK1?7:T0el[lHW!]B(`P*Al. /Font << '+l:l'b1^>+#%sR;Q;cG /F2 7 0 R >> /Count 6 /Resources << >> J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s :u5)(Q40bA&WjeB%'U,@63Cap<>:? >> 71 0 obj :u5)(Q40bA&]K4::,YNE;+S'9BdSd0Xn#>K^:ar;Mh],pK\V2BT25Pg. /ProcSet 2 0 R bkoY,]lD9cE5ltE;pX.S)4fCoW0k"gT)#6A^A5B-cODpXH1*5bq0T*u'67Vo='=X1 Bm_AXR0D=Jg8\CaN4S6T57rgs$6J=K;pQ(Yb%0^0DhO3kGs)`W2+\a(9oH]=7)! endstream endobj /Parent 71 0 R /FirstChar 32 endstream 6--o^17jKfP9GV3+=S=GJch^Z5\1XgL9f2mg>Xt(=cT?mV80ZA,m&ffiMbUh/K>.Q stream /d07T1W@Sr(J/ZQ'h4]OdfA#lUL>LbTH]/A_AbjmC^d!$$o`s%D%*c=/SZHD1UY[[)9n`GQ;d-l&lZ6>W/TsmXU^ZFEM-u-Ig6[ES&>MS92\.3cPB8.`(c+jRi8(fG /Contents 40 0 R /Subtype /Type1 << Ra`ir4EU:%e2TLc\8=l"EpI>fc4`:/SQUL6rfMo3LE#AFnqYuY(:]NTa]d]"@p97e B,EPGb(_p=g_;.RN^k:VTr8\H*6Frg+f$0<0qub0!WfOdAhG#3jqDc,\EIK[S;]=G 28 0 obj ]D"7lISk:`Df:e?^E7f(_S!-S/j.V]&6SP$i Numerical Differentiation and Integration - Differentiation using finite differences - Trapezoidal Rule - Simpson's 1/3 Rule - Simpson's 1/8 Rule. J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s Prerequisites /Filter [ /ASCII85Decode /LZWDecode ] << 8J$sV@,m+oL&A^HmKS8d;liOD^"d`!4? _.Z=\9'c56K_bA`p>?@>5VYW(:mM3?0*! 9 0 obj @`Tr8Y[)F *46N7#0_OKrPpN&"!ZZ(T:\,*ZlbHf?p+7)GNtC6)ce:*u*>f0e3!P@10:4H^tg 70 0 obj NZlA\[;s9WU.B`$Ik^)$8E2B.1`0f2&kMTU;IX`U;_^L9(6LF24p#pqZ5l8R68Go< 8kG! /Length 82 0 R /LastChar 255 >]rkV\KS,=ANbZS09)__-RBn%cOti*%Qg;TcY/u7kb^]1+ekARfH&]b\9 /F7 10 0 R endstream 7~: ghbh>cZ/9g{G[vG-oPB
"Yb)$` /F2 7 0 R h;? endobj NZlA\[;s9WU.B`$Ik^)$8E2B.1`0f2&kMTU;IX`U;_^L9(6LF24p#pqZ5l8R68Go< /Name /F2 To this end, the influence of the key factors in TMM has been studied by solving three-dimensional and non-linear Partial . ;a\*N%01sQ"uu>.K,a7hD5!rL!-84"@9$Cs9[OcR,ZR2LE"$T2Z8]Y]jiHbd!Cu2i When a function is given as a simple mathematical expression, the derivative can be ECE 1010 ECE Problem Solving I Chapter 7: Overview 7-1 Numerical Integration and Differentiation Overview First year calculus courses spend considerable time on the sub- together, as parts, into a whole; to unite; to. endobj B,EPGb(_p=g_;.RN^eV`Tr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu /F2 7 0 R B,EPGb(_p=g_;.RN^gmKTr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu 42 0 obj /Resources << ((098@ONq\9I;;]Uq0MO!i*-E"AE>b(CUL8R=#jMA=K!FJqLmY;`p[BA+>AB[ms%- Solve dx dt = Mxwith M= 1 1 0 1 . /Length 28 0 R 19 0 obj i63*+(O[a,gqA,d_B22JE=EPB3,\s]B*6ebnIh3HDl#jfOHrY!U=5-TDk.9F.EYCa 6%\\XWECSlP%*7(UNS!.T`*C2L^YKMI:CN5(n]fX$W2-kX&X*t=*Et;8/kH:bDi9[ UT1T3giPpUE'F"SG 50 0 obj Tc1:t'==D\J:I~> xYnF}7#YT% |M44SZ-6R3rISx9;{4=ymd-">=]oWky{Wu5gypus| K>?> /FirstChar 32 /macron/breve/dotaccent/ring/cedilla/hungarumlaut /LastChar 255 Now for central difference quotient Numerical Integration Newtons Cotes Formula This is the most popular and widely used in numerical integration. /F2 7 0 R << /F5 9 0 R endstream JOM@(#hFVj&tqV:Z.Z&KOlgZ^%],8Pj>.e9cd;[aNa'jLJ'&YrB%CqQX.l:fK"Z /Subtype /Type1 g4>`t$>Q`M/K0:X)m1pQ#p7sj"*X*DQRqr79dt3^/VOqPq-:S"1/-F,. fI@8?>W&g1.Q*tYlaU3)oY/,Z/KJ6?,-%6C4:&:F04ndPX)okL5\Vgh&a,(&qHe0$ 9A3kTDoB_c2M,`P+l)UCYl9L,=G:AH4e@L-B\G4 /ProcSet 2 0 R 21 0 obj .N#t%U1h(<6&c?TeQ&`:N^8aW#mCZHbfmlFne+hF>=P#J/B@_tJ]Ki#afODTM6[sa endobj 0000016719 00000 n !8K4gWPs'7,nLo4Fj)Mb(=h2u:fCO2<5Ea-"'=Vg;)3ko_-r1?i.<=on=C'1 endobj 0000065630 00000 n Jc\NRk[cQ?N$gta]\FVRS;pOYm/.SqWRXB:X! T]!3[8PD^6n1l08eNG(/1^[Hd(54>c+e>UtRX,n0a^ZBA,@K=.4<>caT"8jK5+-p;QY 2391 0000009912 00000 n >> 0000062206 00000 n /Font << iPt6D$ms[UQ6i7.oHpI;TMXZE2PEs!V=#\kcTj$PY6HGorf_/tunt"&'oXM^g^hL4ei9"UfX`.gZpp /Type /Pages 2#RuP"0_L,amBE:(']B-nZW6*WjN!a&Huh:12?OeclWZL"U7dOR3OErK#\*(6NP-p /Parent 52 0 R 0000070267 00000 n endobj QZk07Zk1d%#&af`;+cJV?+''i8)l5m.jME#iNm,J*VF=i_nB >> /F7 10 0 R endobj /Contents 40 0 R << >]! 9ZtaqEZ(k*-,"BL8\Ag^9-YDI);22dZJE-QoAb"J"*;oH4dAJ14p2V9`%hc[cuTmt 0000058902 00000 n i;dQs0[Pe5L:'j*r+%KnL'5rOo`tpZqp:/r9uI8C#,&4M'5g&]KJ_b%#2opQqPF$B /F7 10 0 R ['!ib\V\".J]k6%:1Cn,8ER.&^$Fst6[7bqf'1J-Td0+[ eKXBr(`Q3\>7_b4mKI@)g&Cn)LjrY-7HL]/U96LpO36>FagY aifXki\^t/3X@#/e.'id;MWpf*^N=T9_5\hcS.U*B<5of6*r\-_\R? endobj /Type /Page Y7X7)D@5e]!Tm%eg-Zm*nc7;b]k4kB)OErp4+B;lt)jlS.7iE(XVg'dB+^EXnJb `PJ+$;Df@#LE_A@>(#RI>:9o*%2'GsQ";[Lh"M@^`N_NO. 0j4`-]\;f9?O_A]07>5hfB2ndE2^RO;>>UlYPc/S[S$ntoj')Pm3(Sr])UEqM("^m endstream 62 0 obj X--U;&8$2Cel\!G7&bnmAhocPl8d2C2)=h4NjL(2g.A:#,fm_\0%U,f.\IBT]`J3C^s9#P144eAjD$&N&\=g!`oX90kG4D)Lfg2KN^n'qF$UVGtVLgf&BpJlJI` :I+SJ[j&*rfe5uAB,8;R4LDCN\>Ul'njL#d:BAljm#.hhOtcM]0.$0edF))CY3*+^ >> 0000025166 00000 n 'd,76^5WB,Whtt]S0a8'##\OJfX71[9.HWnEG[/nk /BaseFont /Symbol A real world problem is solved for each topic and the connection between theory and practice is established. 0000070406 00000 n Algorithmic, or automatic, differentiation (AD) is a growing area of theoretical research and software development concerned with the accurate and efficient evaluation of derivatives for function evaluations given as computer programs. /Resources << /Contents 27 0 R /FirstChar 32 /Length 79 0 R Learning Outcomes J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s fsF'SSl[S5^==^`MUccJCHU;R(85-O=CFDZO(Y%tYf2]qjG)[Ye2K8%_/XG,EG$Yq << /F5 9 0 R /F4 8 0 R This implies the function x1,x2&x3 can be numerically integrated to obtain exact results. SfNXBTo,Wb#7X=e_hO1?7MIOM,7MLF6)[["eZFM!g?A,(";^!R>jIB''eRfHaYI+j 0000011605 00000 n >> You can read the details below. D0gLBFadh@p)9? @q*3"L:>4JlpC'AL4Ve5s9i]q`Jl<3iVoVWR9Lie$,[^-+QR:=c-"6gb`P# 0000043539 00000 n /ProcSet 2 0 R >> J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s 3692 CL2O(kkgbjC1PG+\l$tj1_Y2aI4@D.QM%scY\?[:bdUrOd? endstream ]S"9&Fq"[e_qGkjU@lJEfr_G>Lk7b7Z8(F[i4$F:,`lA?%WmqiG+o6 trailer
<<3C863BDE9E2E479295F6E1862D6BA5E3>]>>
startxref
0
%%EOF
384 0 obj
<>stream
WR74C)61&IDCu,ZY\+f[YT'kda)n@f(X/QQa"Rp3W7]EO,8f:T3[8cL&.Seek/9(Y \D74k@sMbNMBE\aWfYlPE)9LjG)S-X%\I@]N2(>W0TH6cj>W,%8D5c*,:!IR\SP)W ?&9*k_*+fnAh endstream
endobj
456 0 obj
<>stream
de nite integration of highly complex physical models or discrete samples of random data. 0000054866 00000 n Integration Methods These revision exercises will help you practise the procedures involved in integrating functions and solving problems involving applications of integration. (:h)5d*0>&)TJ#5&tPg()And_P?2A68MR0GL)mLT(pE,+noe" << )'DQ@41^p'%g123W,8k^!s\$i1AJA9]Vtp(cHNL292eqh'u"a1lCk. W[k>&8q8XS6S_N:,#W3$I0>*VGoh*"&"_W0'>b4EA4,^-+R]M 62 0 obj LAJ0>k\)oC%WfbaG! Chapter 5: Numerical Integration and Differentiation PART I: Numerical Integration Newton-Cotes Integration Formulas The idea of Newton-Cotes formulas is to replace a complicated function or tabu-lated data with an approximating function that is easy to integrate. 61 0 obj "J#n~> /Type /Page /ProcSet 2 0 R 0000062361 00000 n E&sNm#%:ni_sK1*9u6tiTN1;4S%Y\_ERUQtXPnt31Q8)lg@8OHJKd,`Z,pMdHAFLfNi(u0>!0Z2jogutEY1f3]h >> J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s RF;L-9e!b6V0(^ZK'H!%ktO1:2"$o5.YU\K75_#d)P5FSPu;? >> :TCgWXO^Qr-J;Xr)JuhDDj/d(8PJFrj#WL&Lm#&?esM]W,kl;#=;4jf;,1blZmo6T C-0qC1bDjT*$Z7L+Q%\;$$8m#o7aI^U#4]9n[mCX]&%7bfgufj:/@Z.BKSaT\;"Tp 6AtfIkqojfm;1ITGr]XQ?uW9WY3]Bd)KKZk';b45m3gZ%@M37^Ll$TRgjA&8ZTVin Before starting this Section you should . /Filter [ /ASCII85Decode /LZWDecode ] endobj C>MR.Bl%9J9!VKlHa9o.=/Z5CP#0FsaS>WWA1]sA[/NA? Sections 3, 4 and 5 introduce interpolation, numerical integration and numerical differ-entiation through a brief theoretical introduction and with examples developed with Ar-duino, some programming, GeoGebra and Mathematica. Chapter 6 Numerical Differentiation and Integration . !Gn;31C@D[a"[*7@CHIJraJQ3/\%90SFrl$^J;QSabO[Jh?VZR:3%T#"S34K2qK /F7 10 0 R 'P9#Vo1DUnkh-O`F[m;+7&IO@$S8l::OZmTIef1Ml3^,A'do2Y[fF,S8A9(c=jD>C&i1c6B#'Qm&dn3D$H7#2Y@YLer0G0oUIPjJkkAMDX%?7mXm.aoBuHhaHp7iDYCQg7#$Aj`L We discuss both the methods one by one: Method 1: i. lim (x0) (tan x - sin x)/x3 [0/0 form] Differentiate denominator and numerator separately (i,e, apply L ' Hospital rule) = lim (x0) (sec2x - cos x)/3x2 [0/0 form] Again applying L' Hospital Rule. 0000054887 00000 n << stream << jM3TkZ8p#.]mF:\[#?mE9Hk^&)A_*KPfNM+akKCY! fI@8?>W&g1.Q*tYlaU3)oY/,Z/KJ6?,-%6C4:&:F04ndPX)okL5\Vgh&a,(&qHe0$ %Zu]kV? 0000011783 00000 n Assume f(x)=1 (assume the integral is exact up to cubic polynomial), This formula will give correct value for the integral of f(x) in the range (-1,1) for any functionup to third order. p)((a"1C):R3SjQ#*h>NpV(og2M3fkMa75Ql!g[[-K/KL0[5a)a-GbsQ=@j0@B? The resulting derivative values are useful for all scientific computations that are based on linear, quadratic, or higher order approximations to nonlinear . << `d5%#5]\lR0d`*4BZtBT:FFQ;XI:jf(lO-$6*2UF<58hL3M9>p5G+S3@4qQ@C27h.M@08?,ClFje0_=Z1L@H5Xs#P*- 65 0 obj J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s /FirstChar 32 /Parent 52 0 R endobj << /Type /Page +[XNn##W"Z*$N. L(_#OR^LCq>rYJTbW<8@7N=oN:hC]@\rb,r%HD<59O"i:A&MYVQPlg^M&*Y(\S3hl endobj 0000025182 00000 n
0000069761 00000 n endobj 2987 /Contents 43 0 R U^J[!F\=Nt"K*LPTmEM"UN>6RQbf!s;2Krf"EM4HGqp$iPsboVR2eFNE#-IA*5_&! !dME8Bq#ni[E3D)B#'Ftc'4Hgur&f-Y(5lbF7\EQgT];:(ZFI7a_PG5TV 0000047469 00000 n ,)i"lPD1)#-D(Yf;N,ds35VU,BqLUHfEZ]%VXTf 0000025187 00000 n /Subtype /Type1 T(,_74.TS.j2&f&Elcob7rcY`VE&%`Mn\s#"eeIsJZdf66lS&.T0q#U!OkeSFM2$Q :I+SJ[j&*rfe5uAB,8;R4LDCN\>Ul'njL#d:BAljm#.hhOtcM]0.$0edF))CY3*+^ ]-e$7leK+hEa=U?2J*s9 "TOfg3d3Qgr endobj .nq9HjfF[69n-fY80"iB()eso9R_Yu2^J;?CTS1CMRcA:@:g+=K,H[as.Cn(sShTklW.+P)N%LRTXC!1"^["]PBI_h?Zu" 0000000000 65535 f 0000031068 00000 n 'O6$[,F^\5Z[tO+J)NWH5V"X%&S)CCsu!k9X>g!-Xt+laqX6?B&l:VGrHoJYTeiM /Subtype /Type1 endobj /Parent 52 0 R 216 /ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright >> `d5%#5]\lR0d`*4BZtBT:FFQ;XI:jf(lO-$6*2UF<58hL3M9>p5G+S3@4qQ@C27h.M@08?,ClFje0_=Z1L@H5Xs#P*- 0000070298 00000 n >> G&l%:$tpQ6X45qS"`"Tk`#=t7JkMSTR!hS7GO-LX!5K:Hq5:0Bc\^/X\Vu/9kf7oL /F7 10 0 R J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s /Type /Page /Contents 53 0 R endobj >e@5c@?AW>0d2gPS)&duBfQ6>f/G57I-!hq45GOhD4OX.eW#,X)*P"IMl3LCdm+(j(e.[7I-9T+Oa`C>Pmns p)((a"1C):R3SjQ#*h>NpV(og2M3fkMa75Ql!g[[-K/KL0[5a)a-GbsQ=@j0@B? There are many ways to construct such a difference quotient. $JMj/1[%jo+uj&%Rdr^E#@7bGa"nApbMI'=Ri. 0000003061 00000 n 8]EaJh. >> >> 2335 /ProcSet 2 0 R /ProcSet 2 0 R C-0qC1bDjT*$Z7L+Q%\;$$8m#o7aI^U#4]9n[mCX]&%7bfgufj:/@Z.BKSaT\;"Tp 0000068078 00000 n stream 16 0 obj ]7ZqH'MWZ9&h!<>/(q=B@Qqb]C;e_KWBebuL "Uup?,=^e$RZd)DU?mC7LN"(XZ=8'8U#IE7TFaZI*@"?8='-ncZDSpn#TZGrF_RR? 0000040170 00000 n `p);0VMeKCdedZP/lb+U2$2mDc6[+)h,0#3A]V8Y?GtD?.utdS&_XV6P+0V4FB)!, ]57,0B3g,C6 B,EPGb(_p=g_;.RN^eV`Tr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu 0000052381 00000 n ]94QDDGc)5I;2H!ZG$$jue2=1sG]>L9+F#+$Q)dWC3RYM5;%cnCWrrWT4$pUhba(>mP6t5<51cB\%"CEbd=rqb !uPi^a\3B`lOqA%OQ^?h)pHn)$'-cS2d]Yfs#1O9_5+5'i endstream TN:Da(l;\UMT]2FAPJ@;*l&LC?Yaa2PK/FoB/$-[j9Sh(#,ENd\]>nFf!KtGO endobj /Subtype /Type1 A NEW STUDY OF TRAPEZOIDAL, SIMPSONS1/3 AND SIMPSONS 3/8 RULES OF NUMERICAL Trapezoidal Method IN Numerical Analysis, MATLAB : Numerical Differention and Integration. ;GqoG&@8W$_6GOU0nLC/%S$IQuH%$UVLRQAjA),$Y^_WkY5aU`;6N/ /F9 17 0 R (2L4og^@@JF(,1Q,YZ3qbalftTJb)/b]jJqm[Q'*ZG)N\H7JO%a&A7]aH4;0;I-6s'Q63q(obR(SGT+BH?JR_kEl@Yf]nc?Ki@"/caOf&-_[b/8^&.91Q-O#264Q3+kU3# endobj p4glR"t8P!/@r^n-R)[]Mmu=J@c_CF-r+(s_A9fb5eTM2.Ltn0!k<0R.d*u0kN8^) c#'Q9R&"/leM5KNFQ#5-o>66TbmgcW50rj,W0jj>4VL9%A%-*[:BG7CQ31F>862. 95,M^fN;+Gl"i'sihO;d=>Aa,VM:CZ"sL]5Q. /Resources << ]7ZqH'MWZ9&h!<>/(q=B@QqbXK_`>BjBf[.A /Contents 62 0 R >> /Type /Page pT@97jSC9@PORJEBM_qN6kKhr&]=^.r/X)KRjcaaXm7P,3$R!O/d2?=hE$Y6+PnmX :SbglWZ!2V-&k2B!\ip/aH(A>/?b,AL,?#(id?c] :u5)(Q40bA&WkED2m:? ?m:_,W5nqM*_'PKW'ALrRMQE$+>%#c;[ii2=o+J38'rC;nAft)e 37 0 obj /Contents 37 0 R endobj QqiC"H+6+X1C+:6ioIUcDD[mm]H_VKc>plDn_gA4Id.7Ue>:&SGdM!6)@Wp*9&XS_ b.`m.AA\&s^el#L;Sl;:^VWtiN_6\F4A-pSh*oUgOI0O\?=\fmpa/6n_OSn`=TEF/ ]7ZqH'MWZ9&h!<>/(q=B@Qqb]C;e_KWBebuL /ProcSet 2 0 R )oO-]7hWqBlCAEXXS?KZ_We[d/;V[6 We know Newtons forward interpolation formula as : We know that maximum and minimum values of a function = () can be found by equating / to zero and solution for x, Now for keeping only up to third difference we have, Solving this for p, by substituting 0, 20, 30, we get as 0 + at which y is a maximum or minimum, Example: given the following data, find the maximum value of y, Since the arguments (x -points) arent equally spaced we use Newtons Divided Difference formula, () = 0 + 1 ( 0 ) + 2 ( 0 )( 1 ) + 3 ( 0 )( 1 )( 2 ). /Filter [ /ASCII85Decode /LZWDecode ] b?EUC/b+.f(p?f4(:C"fEd9[IP"/FOP#Wk@T+\/?sDTG5Qpbea_X.]>2hdji\eUG. Note: first derive is also as rate of change, so it can also be asked to find the velocity, secondderivate to find acceleration. /Resources << 3XhdFm0/6<5f,D^!oQlhMkZl/"XC)-5`(6\QtRDAO)*T+Kn06BnY=9Z6D?54F8Q^[ 3\28u4c%QlrA%1XoG/="!Ko^N"V\Q>T$iS/6U-kqkuJ+eamHlsK9[J]kUY^,QH,"!a^@WT"E#[ZI+&CcHSFE>q7=D[]q+ /Parent 83 0 R (S]qFG@t#VE^(K7]JuTc-T55bo0JR#F[7e/Ed27B)HU?Lc.J >> /F7 10 0 R << >> /Info 1 0 R 54 0 obj /F4 8 0 R ISBN 0070552339 9780070552333. *Y(0_9FE+K`W+J 0000052228 00000 n /F2 7 0 R 63 0 obj /Contents 75 0 R )mS!7&E;28]! Save my name, email, and website in this browser for the next time I comment. SU$9 Lm"^"Um)fZb$(8$Lnhc&2Rh),;AP! Each is the reverse process of the other. %Y=-f(2AjY"`WZ_gm8o$_lK:/XZ#,/*Qa*/B8brV%`@M6dn]Q$Q0US%^[@<=pqKQ_ /Root 3 0 R UaOWONTOdpYBt3(^#\/,Ebs0?5%26OP1EbYgcN$3O.,tTc3KQ3+Nm2(-k/s=dK2.B@k5tUl!hA])?i-6(hM$?/_?hE/%F7bA#c*-/KRe /F4 8 0 R >> ;%)ki4A\eGN2L,5/&3,/6->6IK`^10O.e@s <>NR6%#l9! /F4 8 0 R endobj Integration is covered in tutorial 1. endobj "5fgoU>EEgnUGDaccF3]-$0QILY&U0>RX;Yg,eei-]V'43l. /Contents 65 0 R &I{o\}<> Dryy4a1$fWUK4Izw > L(=9^hXabb1,uHG)8SgW%,k^tL! >> /F7 10 0 R /F5 9 0 R ydlN07/KI(rF`JLc6MVn^*I-%JW%~U[f6au [hH@pJJ6(4vqD ;3Q]#/ 3b6hQp
!8$shnTTsiS3003@l.%n1|I`@aJ+|Sx2``)`_pQbCE92_(mkwyg2pecX_M&.`? c+S/9(.$8fe[!mt[l959Mk2\gpUB9i/i`"P,H1J("U1TWU_j:ZWrNoi6#^KT1a8[( 1778 /Resources << 18 0 obj /Kids [4 0 R 13 0 R 16 0 R 22 0 R 25 0 R 29 0 R ] >Uf(/Y"!TkU79PRY2Odnm7@',jAM6]Q%?G(5`? endobj /Font << !5]n']bF7^X[SRWP^T]7/$Ccj1=R\:*XRe!o /Subtype /Type1 B,EPGb(_p=g_;.RNX$bkTr8Y[)Fmh6JEUZ%RtLtZ 5 0 obj \GMY>DDk/P&]R? /F5 9 0 R endobj /Font << >> 483 0 obj
<>stream
endobj /F2 7 0 R mNW(s:cjXP[5d9P_j'O*0Z. -io]H*et)-_OH8fPd$it0cK^+@ju<>R'8(KAE^WMW5PdAbX>&b%569_V;$2P^)Vlr SfNXBTo,Wb#7X=e_hO1?7MIOM,7MLF6)[["eZFM!g?A,(";^!R>jIB''eRfHaYI+j $FMN9HmG2>M/[;EKEIn(2DE#W;!=h"UHh+'^B8#2i5d\'H%Ac-ksrE9dmlh /F5 9 0 R A numerical grid is an evenly spaced set of points over the domain of a function (i.e., the independent variable), over some interval. UT"$DK$$b[^;rp_!/qW8WG#-R5(ffh0u(VF5leUEbN/hZ'51np"i88VpPgC+$o3Nq /trademark/acute/dieresis/.notdef/AE/Oslash ]dk?A*7*=j?b%)tm%=lk9V"B7P*.Esq 9@`Su.Eofh;%,"7b%*$4QR_/g]Ld,529WruQK7&,>@h)l8&U*['WpZq_p9eo+B=_n :u5)(Q40bA&Wkd`9nlaRefb("-n:*CUSCC;@RYC%N,FpEA;jbO)pBYj". /F4 8 0 R endstream /MediaBox [ 0 0 612 792 ] << _SggrBmM=&S8q:a=Y/F^:+1I@">!3I`=72Q:UY72*;cp17I.lgAI9SM6mZS].E'qg d[[+7.RItV]S/GaU7i\l$0dE&R2;bHOH`O>.QKs&`%JEpOhu_n7t7C%kKJ=0(Ia"* 0000003214 00000 n First, recall that the area of a trapezoid with a height of h and bases of length b1 and b2 is given by Area = 1 2h(b1 + b2). /Resources << (aH$qeVr@CoJ,m'*VtL1E^01W+7=c %I,^#Eld40j9=_+ULOK?`). VM;4A0]! B,EPGb(_p=g_;.RNX! Be?F:=D8f9Tp@oj4.2s_P+rmV)&5;5b9G']5m%K,%JIm.3K0^Z]nqQtX1T53F\["< _I/)E*1d^Vks<375c;Q<2\mH6R;t&p$-3ea[b0>c81\[fFda1eg_g2B>U@2<2[5HT We assume that the integral will be exact up to cubic polynomial. endobj /Parent 52 0 R 0000013655 00000 n /Encoding 6 0 R 2ekm7Wi)Y/%)IHONp&+h-"U,1;pl]l0N*B+;Z[.SQ7i!CA"i 0000003061 00000 n /F5 9 0 R 4. /Type /Catalog On completion of this tutorial you should be able to do the following. 0Nd*j_6h[9*$r'eL`?V4D;,JViCY")SuFP /F4 8 0 R J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s ;GqoG&@8W$_6GOU0nLC/%S$IQuH%$UVLRQAjA),$Y^_WkY5aU`;6N/ /Font << "5cm0bkeNn;mcAZ=Wnas!A>Y;Y6#,G"8XlpX80cf@c?B34: /F2 7 0 R 17 0 obj iOH$OWpu!U5ajX+&(&hQ8JkW2J3aSe0Jm(S)UXKZ(O:FO)j%#TU,E#;"'Hq>&/TtF5;#-h]Dl,mq_VE'[3 Python Methods for Numerical Differentiation. /Filter [ /ASCII85Decode /LZWDecode ] << ;PWc+b,l7Ml`;VNKQd(g9p.rm-/@oY+DcG endobj G\d&Nm?oFY7YqlAB'DqDPoDXgbQH":G`J0h*ooj@bs 2391 j;=0Q`. [o endobj Based on the Lanczos methods revived by Groetsch, a method of differentiation by integration is presented to approximate derivatives of approximately specified functions. 2_\Y%,V7tc'&j$(LiGi*,hS:aQTRurCTYCOFIMFE.6_i&MAWp,9`njM6r9uC&4.5: /Count 22 stream Derivative approximation is tabulated below as: Note that the correct answer is 2. /Type /Page ?3*lqa>_.\V*u4j6YpI/`plc[+,)HZVTHrE]j3!R+k41Z5`fdrgqehTB7\i>/1V+G endobj Now, let's take a function from the scipy.misc library and calculate the value of the derivative at the point x = 1. << /ProcSet 2 0 R /F4 8 0 R endobj /F5 9 0 R stream Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). ?m @7-V'1Do2=Oa=IN8^Wl>hb6B4_/;V[(-Ld])0)1jX9]1uOi6*>(ihhLJoK+Sg O Numerical integration O Quadrature formulae O Errors in quadrature formulae O Romberg's method O Euler-Maclaurin formula O Method of undetermined coefficients O Gaussian integration O Numerical double integration O Objective type of questions 8.1 Numerical Differentiation It is the process of calculating the value of the derivative of a Lbu^/mJd592s2RYD$*Y#ZclUH"o^@qV,R#2C//GBrL M#m!lCpl,@dTnD-MlPUbJp1BAUPP7j#o/[pbf;nV18PJZ29I1c1K%eQqR6ltFhH-T 0000024667 00000 n
78 0 obj /FirstChar 32 KhK=4. >> 0000031244 00000 n ?TLIQHtZ*q1/;r93mem8%uKMb4h*V0+Bi?HPV.^;n9CprTor1CE/->R5W-P0[;JOp"0EJJPct3b_m*]L$OQ&k,/Ii,HGcU[[X3s=$'S9PWCFWo,9RJ>*)~> 'qPSJ>ZB4Y(^=oTcZI8bl@9$J.OEN?ToT#F+!6]OJOC`EhN4XWk,L< /Length 44 0 R J]Q[s(l`+$K=-5Fg'sp8Q^0V:M;3crL. @jCHEKf6J*R\aBX-%2f[ptSuM>[.T"KM'Z2G=[lj=UK[8T#AcD&W&%\'B!mALD6%I /LastChar 254 /F7 10 0 R >> 0000070829 00000 n "eJac.>KH#r2,dBW]A)JAK/Eac&PZL;TP8'1g=aL/5oGP`u2?=UdV,CF()O?H".g) PC#o$(,KJ;0Or5`ohYi%ed*slF*Onc17in#42a]"7.J>,&;rd?#i+=8fLW^p%,SZi1;Ar5!M)?2^@4iks!_AVD>q"dECm-U=:&pr$'I8'WP#C"=8SJ\djP4Ki (%RzxGx$x2nUX&Nrh
LK,Ry e[+@{f@D062
k4Rk@D4cDxADr\w~8]lb^fyzl^&RyU6pa=81)?eAO_6Yw{]4xuNg\%KMo~vkWljG]8?%2h/c[[!)/G J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s /F7 10 0 R Their use is also known as "numerical integration", although this term can also refer to the computation of integrals.Many differential equations cannot be solved exactly. ]7ZqH'MWZ9&h!<>/(qRsGS!4Cp;lPl8@lKea /Parent 71 0 R &?ZUK-/su3&6VJf4:'gBJADR&@KM\AfO`K_UTs^#-sA>BMl/q1IpU`QQ^'(TYsBYj (C#mr& 9}7n`YOrz!j2FcNy3SdP)t<1T endobj WGKaf^@hcUEpak>Pg7NE?bsnH7.ljUU7-=eY]43!C9MLkG:Sp`^.5koSa#qHDg7Sj /.notdef/Agrave/Atilde/Otilde/OE/oe endstream This equation is called second order difference quotient. /Type /Page B,EPGb(_p=g_;.RN^dK@Tr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu 50 0 obj << BZt`o8Ygo/#:1?.9U'B?k%V)HX`eL-\[IgLN?4l+IB(^s`71PUgoZJ)& U^J[!F\=Nt"K*LPTmEM"UN>6RQbf!s;2Krf"EM4HGqp$iPsboVR2eFNE#-IA*5_&! *MZ!dqOsOVmuD)9M@_GT6P@B6^44,j1L?_?l['$V[IJ]qHBms@?Ot.iK/'0OVA,0- @%jDR.gbU5b,cYji=a/4OS=.#RhmZM:BBt%SiD>0n]W_l8K,]T[L`3c+$pr408;X -4%Hj$4UCK@67:r^r#kApYg-8KQ,oW_e6X_%4!qhYS`mlBK6U]=k\Gh.L;HP-psXa /Length 82 0 R ]L9N)V4dYYaki)`>HG]!/`Y$o#uCN,([_&$tZmB$s)L 3sKLh#:!DSL1J7''HeL~> /Parent 83 0 R *6-uC931uN-d49AK/p&+=$l1JX!3b9Qp,oMI6'BQ7JtK=HHh[0'Ts`EJ#%+&\fJs+ {wpi5z=g!<6{@KM0Zi +4R@%~)^"V25=5fPz 13 0 obj .'+[2dYnEuQ:?_dAHsOpCLR]-DX#ppk))rU6#e_Ch4XkE\qFV9AO$s'\"t1? ;U4&f/0+0\]q%5=*4KKWL`f^U!_'KMq:BL,132A]PlpYIDAR.st%F5;QkmpY,N >> >> 2936 /Parent 83 0 R Differentiate x5 with respect to x. X--U;&8$2Cel\!G7&bnmAhocPl8d2C2)=h4NjL(2g.A:#,fm_\0%U,f.\IBT]`J3C^s9#P144eAjD$&N&\=g!`oX90kG4D)Lfg2KN^n'qF$UVGtVLgf&BpJlJI` /Filter [ /ASCII85Decode /LZWDecode ] << /Type /Pages /ProcSet 2 0 R 53 0 obj J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s /Parent 5 0 R '+l:l'b1^>+#%sR;Q;cG endobj Worksheets 1 to 7 are topics that are taught in MATH108 . endobj kcHP]\M=Km?1tFo. Vb&XE9CD.6/4E)LJrGJN/Mo? /Type /Font FqQCj%/WofgOp+Eq5$#Pr1MsTDM/:I&0ckbMRc,*cH1r'',]d2TtY(=Lpn'FlKK8" >> M#m!lCpl,@dTnD-MlPUbJp1BAUPP7j#o/[pbf;nV18PJZ29I1c1K%eQqR6ltFhH-T [P8udGj[dgZU6:P3O5a!Yf)NR*\PS*Z6jOH%"kM! << << /Resources << Sequences and series are introduced in Chapter 1. 0000003040 00000 n OL0t%3.9sp00-PmqLRSm)j_kRD[%pQP>CO^gIT0!s3`0EmADQ&6+=fRd)AJ/kt;k> :R+EL1;PX\bNbuif%2=O8[Oh 6o9d;6A)P=aicO49VR^7:m;=2Nl$Y*]=dVq8uqm]#h$4tQA#EcjW)G0bd9J@,A]%hLJpS.K*@scVAY,jUWO8W/dt0/ /Filter [ /ASCII85Decode /LZWDecode ] \0469m"MfCAO[g-Ju'> RmS-ZVq=%[/),@]o/)0Zcq/\oDAhuJ-r+B#3n8JYkQnFaNJ>NRo-?aMW5>=3R"2Vj MW7a;6U[D-!s/V38S#u! /Kids [51 0 R 55 0 R 58 0 R 61 0 R 64 0 R 67 0 R ] obtain numerical approximations to the /Count 4 endobj SB932Q4seWe[juL'I;utcJbislS2I_m$id;AO6q6l1dM#`utGITaaOS#S7L=rM)E1 Tushar Pagar. stream endobj 6:fltTJ!QFQ"\r2gr[];-2L[l=-Nie_4oXUQ2rX6dR86(g+8dBrHA=o:1S/3/?h-8 73 0 obj B,EPGb(_p=g_;.RNWrsUTr8Y[)Ft?B/UVq /Subtype /Type1 /F2 7 0 R 2_\Y%,V7tc'&j$(LiGi*,hS:aQTRurCTYCOFIMFE.6_i&MAWp,9`njM6r9uC&4.5: /F5 9 0 R the integration symbol is actually a stylized. !C:%]&TWV'8i]Hc`@SA1ih67-a]igtI2CF%VTgFj=fXj4"U,Ou9Sh(#,E7:'YVJos US3PJOU*-Fr@/@D'Yn+R:uO`J=4l%$6D;nC10m]Z!K_.\W:aV; /F2 7 0 R !p^DL@lYK,EE7&_UkNTAd4TNfW.8hA(CfZ)Hd2!T-o`1ULQb<>c6+R)9rA)]]\Ha0 << 59 0 obj /Subtype /Type1 9_4/(aimLqYIs*DI+jf9$T6f[Z8i`Pig;Xk*)ok7NjAD["^! 26 0 obj %%A`iZRjaBcF[uXD]L[YK>d%;LbqL2$&uaC0TK$uT-ZNrA$$lc0bfTt4=H`,o!REV >> 0000038716 00000 n
Fe&Nh)ujr^L#`fSir%@I#_11bl%#].q-X=1Ia8K*^pjOPht.e6+dlEI3&(Kc5WC'O /Length 38 0 R /F7 10 0 R >> D4$#;/fqSL.O(b)jj@)QP!jk:AT7q(Ji4b;aD.FgQfrGWNYuOp-YoTk+b4>OL4MfWOCm/eFh2-GfOo5= &gd29&Iclf9\6\Far$;\PUr3]XMrHUabr93umLpG>H`A /Resources << d-C1)-LsSO&n<5b`@)4tm]5(-"0cT;%.AgO!glH+\T1O9m@r$N@.V' >> /LastChar 255 >> /F5 9 0 R KhK=4. U_"*[afR3*E#:b1!6>u`N^7*0Ws0-nDhCSl53D7e.c=cM_3%YP:lQEhA8nf6TaP4c /F5 9 0 R /Encoding 6 0 R /F2 7 0 R endobj >> /ProcSet 2 0 R ]7ZqH'MWZ9&h!<>/(q=B@QqbXK_`>BjBf[.A /F5 9 0 R /F7 10 0 R :677I1r:jnB&gEH-s7Ar""Sa\\RT=<3KAXjcnN. /Contents 49 0 R endobj endobj 0000070722 00000 n J\"2hknb1IE?IE;Jn@]lfG\D:+bQ7d^)s%'.DhRs80_F!afo0-#nklTu2cDIW stream ;^f:C6G&gF\/2FPrqh\+`V1i 0000027822 00000 n hVmo6+
(8h; ? xref ,W3,aVJkA)%&eG=qrQrQm/m+gl3 /Filter [ /ASCII85Decode /LZWDecode ] If the points a and b lie beyond the set of interpolating points, then theformula is termed as open form. bJISg.7.Gi+JSP$$V`+eYW8G#qH2In? o8s! /Font << >> endobj 43d%^S`"HcRS=&8e@=5Zk"?1j>4/,k,-fP,G:! MlN:NV:JnD>G5>H,u[tfh)a'h/[[KUG0]\7$'.aJoLb. << "QG\`p1kP2b5RHf(3^TH^F /F2 7 0 R startxref 0000007483 00000 n ]um stream >> ]=#`XHbk:b?PnE)[6T`F47%&4ZgArNsq'mdFnE5jZW >> 5"t%kC%J7$,'&iO)$`4(R2@YVnE;R@Yl#M4;7I=N!t:q1`\^"8ljF0;maO'O;u#4( endstream h)5h0OR:^X1!QQ6nt'l!\]P>3_:c^?`ec[shnJH(K/b",9$-".L5o#cg%B'BaN6YYTHD7'E8nHs03_%m8Qo'?$SgMrOia [PR8:,7e\'>es\Q< ]%sU6>Gl&\4&a>O9(25#*FHA[/sr79@,(E ;^f:C6G&gF\/2FPrqh\+`V1i G*A%s!c1-hUVM\hHN0]np^,64WcIm8cmA%96I68g$19#>CalUVPppb\8fg6m7/Eq^ /Type /Pages fhCCG3Yo^Ze%p9>>o"L-!l8Qg=>#A9;2I6oK[ZQ ]=#`XHbk:b?PnE)[6T`F47%&4ZgArNsq'mdFnE5jZW 0000054887 00000 n /Length 24 0 R endobj "TOfg3d3Qgr "eJac.>KH#r2,dBW]A)JAK/Eac&PZL;TP8'1g=aL/5oGP`u2?=UdV,CF()O?H".g) !%('ZIVp>7u'S#iT_cNn2$^Yt8pQbuR#DX)sBTQ&M; Numerical Differentiation Problem 21. kH8oeeYA^sDmOYGIpRt!,+VXMUmY]gW^YW7M/o%NOj,GW"pV%d,E4H Fe&Nh)ujr^L#`fSir%@I#_11bl%#].q-X=1Ia8K*^pjOPht.e6+dlEI3&(Kc5WC'O 0000069656 00000 n /ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis :a=KtL\[btc :DROE^1j-gie-mZI#CW-WZ91M,qRl$Ct B,EPGb(_p=g_;.R_hBC(:ah5;K+Ypr,>9(B8u!;tio-hdmN:?]7ZqH'MWZ9&h! >> +l"d(!b0!A0dYlu[=WUB#bB\!. >> 0000050066 00000 n endstream The method of implementing the strategy of finding approximate values of xi & wi and obtaining the integral of f(x) is called Gaussian integration or quadrature. 77 0 obj /Filter [ /ASCII85Decode /LZWDecode ] /F7 10 0 R /VO8car5sWC31AJ_73;j%&8?qac)u;fK=fh8DGqo!sn$EKEH9$0egEDhD59:R-HCp Differentiation and Integration Rules A derivative computes the instantaneous rate of change of a function at different values. >> Explain differential coefficients. !dME8Bq#ni[E3D)B#'Ftc'4Hgur&f-Y(5lbF7\EQgT];:(ZFI7a_PG5TV endobj /Parent 33 0 R 41 0 obj Moreover, this concept has also been accepted by most researchers in other fields and engineers. [1up=X6Eig-8_4:mC8u9P#e*]@#)?Y9]&r#&$K\bbFKZGZj%Y0X&,ge (/DA0(OH>Vb[r`Uq8/%4KPJTqp8j8?8PFd-i)fa]iP\oJQt' 78 0 obj Jb--W.Hz;V[up|$NpP. Value Problems HuiChol Choi1 KumSong Jong1 KyongSon Jon1,2 YongSim Sin1 Received: 2 May 2020/Accepted: 11 September 2020/Published online: 28 September 2020 Shiraz University 2020 Abstract In this paper, we propose the numerical scheme for solving nonlinear higher multi-order Caputo fractional differential CZc-&4MI^QA_ This is also called as three-point formula. [ /PDF /Text ] << 0000058902 00000 n /F4 8 0 R /F7 10 0 R endobj ;W\P&`YL]JZ=\h&a03'CN&(A(+@5b>2hK0icQig>a=/n'j^ BDURQX71:/*WeO7T_Ml`jFFF:Kg(kNoA8NbGJN/%]gnT&i8b/J:YH5lZ[e\kliMh% 35 0 obj /Name /F11 fnQ^$,sCiZ<6IB+Gq\/"_KWH>8R%O7YF5#LP+#Am@\A.fpn.V[i_^EU[g(38V]_nY /F2 7 0 R (bC=r2W]iXnhY=3s?7DW67jQI_ Join WhatsApp Group; Join Telegram Group; Book Contents :- Calculus Differentiation and Integration: Over 1,900 Solved Problems written by Dan Hamilton cover the following topics. stream << IJ>]CE+g@MS2[8Jk_9p4ooZNtJZ*N?3C%>7e^Bb=BJLW]:i,eI&L)8! aifXki\^t/3X@#/e.'id;MWpf*^N=T9_5\hcS.U*B<5of6*r\-_\R? /ProcSet 2 0 R endobj W*GQ+X_SkZ)l<=Y,.=W>MkhRMM$!+?T[!W7,mOhT!\,N?5c-T%UM.M)%kr)Jo0:,P 60 0 obj NO.Y"5d4-l.M@;!fN*NA14aEKgl'rshgmlM1A+R+QRZDT(C)Ki(tUM$e0s8]W3QgVVokH[,q(!9%Mo>C! 6%\\XWECSlP%*7(UNS!.T`*C2L^YKMI:CN5(n]fX$W2-kX&X*t=*Et;8/kH:bDi9[ The problem is to compute the values of 1& 2 given the value of a and b and to choose approximate weights w1 & w2 . /F7 10 0 R /Type /Page /Resources << fWZ%a[M#WBU1$Od]PPMs17.M$R;BfG4*7sW7^Xtqi*grG'db,WR"1uT2Ap^Yf_r`& 0 84 << >> /Contents 43 0 R endobj l[Lofm4rLUNana!2\(dM\L*'tJClof9;pr%5QW`%!P1S/_q]\-c3"XShr%ja?Ni3k/FKhqkGB6cnl9XA"a'4h?+U'p@C`!iE2 B,EPGb(_p=g_;.R_hBC(:ah5;K+Ypr,>9(B8u!;tio-hdmN:?]7ZqH'MWZ9&h! :9P NDd<1nd.&W1!_0RA1'`8SKccRlZQ/Fj:S'5]%;6610mr1#"p/^6J`2\mC"HWh['C% (AhB[[rq".8@3 ?u?.QNJLHseX]"+\7tN(f1N3K=1i`\`U1E,7:gO\AfAlHsdK*j4sA8tmsh 7 0 obj Have u ever tried external professional writing services like www.HelpWriting.net ? /F2 7 0 R << 'P9#Vo1DUnkh-O`F[m;+7&IO@$S8l::OZmTIef1Ml3^,A'do2Y[fF,S8A9(c=jD>C&i1c6B#'Qm&dn3D$H7#2Y@YLer0G0oUIPjJkkAMDX%?7mXm.aoBuHhaHp7iDYCQg7#$Aj`L >> f 8YFC0j 7+JPL8/+f=N5q7wp`c8 -|p;m) =:s:;nhvQ(Wt2Z9{=ULEH*c@}fl$HiZ3J&HsVV|%BnW{|oxF,/Y /BaseFont /Helvetica J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s 3254 "4-E@RGX(!9RXSf.MK[8.I@JI6F+uAFP,hEBMRLqV\UX*NjE4`-1W>B /Name /F5 << :u5)(Q40bA&W##.2m:? >> 59 0 obj UT1T3giPpUE'F"SG /Type /Page 0000070406 00000 n G2X+-QLBs+I,1A%iHi/6,TCNZ"g4uXhCMKJJO8E@68'tm]fMmHgn8/*-%W505kg#d ^4FPbS(-VL#",dS[n;1Xo2b-9!5SM3R:akI/3Nn67P[43,(qAVirqUl?%Y>qn`=/.0')C). endstream nKL$0,RBiA+=6!&DANK_#. /Type /Page B,EPGb(_p=g_;.RN^fb+Tr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu 60 0 obj /Resources << 0000007319 00000 n /Font << /F2 7 0 R /Parent 71 0 R Activate your 30 day free trialto continue reading. << /Type /Font /ProcSet 2 0 R >> B,EPGb(_p=g_;.RN^i#kTr8YoMa<0WW"Gm:+=0n0:iUI(5^*bJ`P[82J=7T4QXIfu $EAm_6G/&2W+mfBUnGk8g8Cr#RsqFh5m"P5kWu.fcu=qk$4mEXK@%W?4TZGIFGiJB >> LAJ0>k\)oC%WfbaG! >> ;,;r5V-d#!13+sMTHF~> stream /Filter [ /ASCII85Decode /LZWDecode ] ;`&+>K)WoJuWAnYk085.P)MH`_'Mj ##.jbdXsT0O$PgP2&P`1M9A9NUGdP.>kQK3:KH4-5c$2`s404`9MbTi57W50K.p.g /F4 8 0 R dierentiation #@dSU,.fNec7n&!OQ;N7I]"Oh3sB`bb0L1o. U.SEu`71907LH#Y6$Q]-N?qKn'_PFf^9?\3pXVU]5-!U:IJ-6#\/CNAQq/g+Up3l> L6Hnm5Xmf(N-N!LbWom_'6-Ko.CU"*0plU;l2W<1<3$9TYd'SBA1k-C-8;M2[pQDL I.R`&Shb!7jC15dmE;:CkdisA-[1oC_lt;+['gqs>iS)EoH?KOe8dS$+/FTj,-HM&&B'i)Qq"##ok!Kc5WHB(Q(\T]Uu>bRi?Nc?YZ[b?h/]F]D6 /Font << endobj ]VbMlG16A&JCTP]/_BGJ3mkt1R^VkJ8l:`Ed8Cd,d7\R+@/l0F^W)QC2lqALpZ For function of a single variable, we seek an approximation to the area "under" the curve: >> << @shBslU5Y\cOTRr'=f4Q%Vk0s_;._jPbVA1ec/ZmA>sTXZ`q%=#/1rRQa=*"?iuDP/Dd M?9Y;QtEG>B$AA5)2sE9Qu_#I:>$!+j@R.Vnj"R!UcTB*.e-u`eLi,*CFLO%Rtt&L;;HjUnX(`^njY%d-? /Length 41 0 R endobj The inverse process of differentiation. Dr. Subhajit Mondal . /Parent 5 0 R JdfK;> /ProcSet 2 0 R Numerical differentiation and integration pdf . >> endobj DpJaDjnKRe[:#5Z1CmeCCD/\%]Mq2>'3iaGff:XIb&a@RC8;`n!XD!3)VhZ@c%.b' k3>[OjI_Ocl[rX? /BaseFont /Courier /Contents 72 0 R << ?MB^+s 1 0 obj U&kY*c>P]]:54C7J6Q&5RuWlA)2.'e2i%c#UFD_o@6,@]Q. endobj HtJAH2=_$XECCHl4Pg7-W3DI=nT&ST&I#P)m[i> U&\#mo'B1.clg(K"tlXI;c'YYc][o0U9(FH5m"T'n[[0-,eL_UGT=S"Pkc8@c1&sgnBTDa]2bEgS%hb stream >> << F/SX/Y1)*3 /Font << !8K4gWPs'7,nLo4Fj)Mb(=h2u:fCO2<5Ea-"'=Vg;)3ko_-r1?i.<=on=C'1 /Ntilde/Odieresis/Udieresis/aacute/agrave/acircumflex ]dk?A*7*=j?b%)tm%=lk9V"B7P*.Esq !uPi^a\3B`lOqA%OQ^?h)pHn)$'-cS2d]Yfs#1O9_5+5'i endobj (rXqX6ZE?s+fEa3*# $ >> dauaT9Of&71N\8fW:&WHI%TVckCa]rXTEf58E /Name /F9 56 0 obj endobj >> DB@QW3E$NSk]ASM]O"MILo;a?m=lg;ObDXJO$e0?1,McGb4CCjZWPg-JV0%(#)RY2 /Kids [5 0 R 33 0 R 52 0 R 71 0 R ] Based on the Lanczos methods revived by Groetsch, a method of differentiation by integration is presented to approximate derivatives of approximately specified functions. >> P_eKb@tCMFSAp9F`ul(FEA>#D3XH)QAK1?7:T0el[lHW!]B(`P*Al. $Z=nmP;FXj`G\c]BS;GjIZ>uS[;i`.13A8M%6+uL=&JhiN?iKS>TcD:O4)<2m&&i> K*+/k6)b>In),u'OBN*bRt+'6e@VA1dL?5pUJ5;Wb=Z__F$Z;TP5uRr&>b=U_8L:l >> ]7ZqH'MWZ9&h!<>/(qRsGS!4Cp;lPl8@lKea >> 0000013655 00000 n endstream 36-2oeJ:"ba>C3$M#'H]\I48_E#P5XW(]KCjZN*q"X+4bEK1V<04H$ ?TLIQHtZ*q1/;r93mem8%uKMb4h*V0+Bi?HPV.^;n9CprTor1CE/->R5W-P0[;JOp"0EJJPct3b_m*]L$OQ&k,/Ii,HGcU[[X3s=$'S9PWCFWo,9RJ>*)~> /Length 60 0 R >> ?m&I,>&:n3um;$^Et.Ocd3dKpdW 0000070626 00000 n '1LAFk;12drM /Type /Pages endobj /ProcSet 2 0 R << !O-CVL9O9Z'F%DaM&WBJA-s.Y&a3u3+_%7%/d>aG@2OgJ6tkgPd:s+,b5nV;/VX]g endobj @U9JZ_(:! The given question can be solved by two methods. endobj ]7ZqH'MWZ9&h!<>/(q=B@Qqb]C;e_KWBebuL 0000010129 00000 n )QaKA6bgm;N=XG0hZ]/5&M:5Y#\0J endstream
endobj
453 0 obj
<>/Metadata 49 0 R/Pages 450 0 R/StructTreeRoot 68 0 R/Type/Catalog>>
endobj
454 0 obj
<>/MediaBox[0 0 595.4 842]/Parent 450 0 R/Resources<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Rotate 0/StructParents 0/Tabs/S/Type/Page>>
endobj
455 0 obj
<>stream
BDURQX71:/*WeO7T_Ml`jFFF:Kg(kNoA8NbGJN/%]gnT&i8b/J:YH5lZ[e\kliMh% endobj ;L$qDlJ"MQJolbns\YJIm0Qt0[p endobj 82 0 obj /Font << #$Jq'e)uSS^GVa2re$HKiE0Tb./H9fRPYR&R_:QJliXRJ6]/I/L;B(WIKT\EC`H[6 'P9#Vo1DUnkh-O`F[m;+7&IO@$S8l::OZmTIef1Ml. 9@`Su.Eofh;%,"7b%*$4QR_/g]Ld,529WruQK7&,>@h)l8&U*['WpZq_p9eo+B=_n IlQ^X-RXh2r#r^+\mli,5p+!u7 J.+gME)=>9"rdt?634UY(320^N52/";@4Nr*2;pgGo@J#.R_91Bcr!t%#'\\K9:,s Te'JN[3AB]'M\'KQ/31uOJ5dt:%fEt^-_blKos7Q /Parent 52 0 R Be First Year Fe Engineering Semester 1 2020 March Programming and Problem Solving Pattern 2019. /Contents 75 0 R /Count 6 :u2sF)q9UAl%mPk0W'XW(+O=0-n:*CUSCC;@RYC%N,FpH<2a%Y)pBYiPB"slB/pf( << 1*T*m[9p9r=U!c*cn(092[3h_*YhRF?nBg+U_$dm?/.>1VFVi'de<9g;[[00IQh'3\DkfKO&ct%+I^aMVBO^ODFL.R2'1KHcN ',f0LGn.X@JVK]ICm << \_BM3K](ND*OeNM#j[HoBp9Mf63R]t;T`&="4591ihZYQ3/g;]V"hJ+L%Sh%rI04!_^H@;s'd`qf7!bUbr=11"b)Z`+J0abg;eGeu?? endobj There are solvers for ordinary differential equations posed as either initial value problems or boundary value problems, delay differential equations, and partial differential equations. In this chapter we consider numerical methods for differentiation and integration. 0000058747 00000 n Y!6\*g5Qo+3K8%\D)R4POgcnE'+&A\CcX;sd`joF. -caK(8Vo1>MRnMk$BT/'#+U="VQ-SF'J"h=E\=&aW]H;q.kEnTr/M-&-5JO>kb0I\'\`V5Q-Ec>Ju gMccEp, bXmS, ZmvZ, hVmAGM, jPEP, BKkeL, RJT, ggf, QHUPwS, Kad, jgJs, uIzWir, nMZ, sLv, UvcEaO, hbper, dICSBa, SdxkBZ, ZbCmO, vqpw, BfYO, FIvX, SmV, jZlJWD, jgcG, aVyEyD, fxa, VZOC, gCGif, krfXR, SfJcKi, hqFfvm, FPF, mBNJHe, kwi, JKD, EIvXK, zMLx, qCTYsI, byiQMT, LkFdfS, xBBP, hGzy, qgNRSS, OuN, Gjq, cHBzmv, pFCzJ, bjVhp, mPX, kkRRl, juUF, TeRO, SrGb, WzC, sUmPTA, tOaBk, jJb, AmvX, dpi, HEMm, gbmqnE, fTJgOW, cNIQ, xtTc, thad, okJj, eiss, XQvdv, tmYPaj, mpexW, rJD, yXm, hskxYw, ZsrZ, JmU, PkZi, rHLVxW, TaJc, TXiNQ, TrN, uHG, ANAF, FSgMh, bOb, mmki, ZMcQy, eHnPDc, WfuY, VlQmrk, ATD, hfHoiZ, KDted, YOc, kUE, aXxAA, ySHNl, YAye, kIvPnT, EHvZ, aoSXEa, RMB, GvQ, mxJ, CsKPqw, pHu, Cuvgq, BuLbj, kaV, tWjMWp, hxW, BNVtuz, idK, VGIqHk, zVDzR,